
The Windows clipboard is a
convenient resource that

allows you to share information
from your application with other
Windows applications. Clipboard
operations are especially handy
when designing data entry screens
– users can avoid having to re-enter
data that has already been entered
in a previous screen. By using the
clipboard appropriately, you can
reduce the work for your users and
make your applications much
more user-friendly.

Delphi quite handily provides
the TClipboard class which encap-
sulates much of the clipboard func-
tionality that you would otherwise
have to code yourself. TClipboard
already knows how to work with
many formats and using TClipboard
with these existing formats is
explained quite well in Delphi’s
online help.

In this article, I’ll show how to
define your own custom formats
that TClipboard doesn’t yet know
about. By defining a custom clip-
board format, you can save data to
the clipboard in any special format
that you think would enhance your
application, and make life easier for
those using your application.

You might have seen Stefan
Boether’s example of how to store
the text from a TMemo component to
the clipboard in the Tips & Tricks
column of Issue 2 of The Delphi
Magazine. Stefan cleverly illus-
trates how to store the entire
TMemo’s text using a TMemoryStream in
conjunction with a TClipboard
descendant.

Stefan created a TClipboard
descendant class and added the
special methods to allow the TMemo
contents to be saved to and pasted
from the clipboard. This approach
required that you first free the
original clipboard before instan-
tiating the TClipboard descendant.

As an applications developer,
Stefan’s approach is ideal. Just be
sure to free the clipboard only
once in one unit. Additionally,

place any other specialized
clipboard routines in the same
TClipboard descendant. In other
words, only have one TClipBoard
descendant. This is important
because the Clipboard variable is
global and you don’t want multiple
TClipBoard descendants freeing
each other in each unit’s
initialization section.

If you are a component writer,
you’ll want to use the approach I
present here. This approach
makes your components aware of
the clipboard, rather than the
reverse. By using this approach, an
applications developer using
various components that are
“clipboard aware” need not be
concerned about TClipboard
descendants freeing each other in
the same application. Also, this is
the approach that many of the
Delphi components use.

Creating The
Custom Clipboard Format
To illustrate creating a custom
clipboard format, I’ve created the
TBirthDay component, which is
nothing more than a component
wrapper around a record contain-
ing a person’s name, age and birth
date. The data is stored in the data
types string[100], integer and
TDateTime respectively. Listing 1
(opposite) shows the source code
for the BDAY.PAS unit.

As I said earlier, the TBirthDay
component is just a component
wrapper around a record with
fields of different types. The main
thing I want to illustrate here is
how to copy data to the clipboard.
In this example, the data consists
of a person’s name and birthday
information.

You will notice that the TBirthDay
class has a TPersonRec variable and
two methods, CopyToClipBoard and
PasteFromClipBoard. I’ve made the
TPersonRec accessible through the
property Person. Also notice the
line in the unit’s initialization
section:

Custom Clipboard Formats
by Xavier Pacheco

CF_BIRTHDAY :=
 RegisterClipBoardFormat(
 ’CF_BIRTHDAY’);

RegisterClipBoardFormat is a
Windows API function that
registers a special format with the
Windows clipboard. This makes
your special format available to
applications that know how to
work with this format. This
statement also makes the format
appear on TClipBoard’s list of
formats, which you can access
through TClipBoard’s Formats
property. RegisterClipBoardFormat
returns a value that indicates the
newly registered format. Other
applications that call this function
and pass in the same string
CF_BIRTHDAY, would receive the
same value as when it was
previously registered.

The CopyToClipBoard method is
responsible for placing the data
contained in FPersonRec onto the
clipboard using TClipBoard’s
SetAsHandle method. SetAsHandle
takes the clipboard format variable
and a THandle as parameters and
places the data referenced by the
THandle onto the clipboard in the
specified format. In this example, I
pass CF_BIRTHDAY, to indicate my
custom format.

The code surrounding the call to
SetAsHandle simply prepares a
valid THandle. The line:

Data :=
 GlobalAlloc(GMEM_MOVEABLE,
 SizeOf(FPersonRec));

tells Windows to allocate
Sizeof(FPersonRec) bytes on the
global heap and to return a handle
to that memory to the variable
Data. A pointer to that memory area
is retrieved with the line:

DataPtr := GlobalLock(Data);

The data is then moved to the
memory block with the Move()
procedure. In this method I copy

18 The Delphi Magazine Issue 3

unit Bday;

interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, ClipBrd;
type
 TPersonRec = record
 Name: string[100];
 Age: integer;
 BirthDate: TDateTime;
 end;
 TBirthDay = class(TComponent)
 private
 { Protected declarations }
 FPersonRec: TPersonRec;
 public
 procedure CopyToClipBoard;
 procedure PasteFromClipBoard;
 property Person: TPersonRec read
 FPersonRec write FPersonRec;
 end;
var
 CF_BIRTHDAY: word;
procedure Register;

implementation

procedure TBirthday.CopyToClipBoard;
const
 CRLF = #13#10; { Carriage return line feed }
 FormatText = ’Name: %s%sAge: %d%sBirthDate: ’;
var
 Data: THandle;
 DataPtr: Pointer;
 Len: Integer;
 TempStr: string;
begin
 { Allocate memory from global heap }
 Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(FPersonRec));
 try
 DataPtr := GlobalLock(Data);
 try
 { Move the data in Buffer to DataPtr }
 Move(FPersonRec, DataPtr^, SizeOf(FPersonRec));
 ClipBoard.Open; { This is only required if }
 { multiple clipboard formats are being saved }
 { at once. Otherwise, if only one format is }
 { being sent to the clipboard, don’t call it }
 try
 ClipBoard.SetAsHandle(CF_BIRTHDAY, Data);
 { Now copy also in the CF_TEXT format also }
 with FPersonRec do
 TempStr := Format(FormatText, [Name, CRLF,

 Age, CRLF])+ DateToStr(BirthDate);
 ClipBoard.AsText := TempStr;
 finally
 Clipboard.Close; { Only call this if you }
 { previously called Clipboard.Open() }
 end
 finally
 { Unlock globally allocated memory }
 GlobalUnlock(Data);
 end;
 except
 GlobalFree(Data); { Free memory allocated, only }
 raise; { if an exception occurs as }
 end; { this memory is managed by Windows }
end;

procedure TBirthday.PasteFromClipBoard;
var
 Data: THandle;
 DataPtr: Pointer;
 C: Char;
 Size: Integer;
begin
 { Get the data on the clipboard }
 Data := ClipBoard.GetAsHandle(CF_BIRTHDAY);
 try
 { Exit if unsuccessful }
 if Data = 0 then Exit;
 { Lock the Global memory object }
 DataPtr := GlobalLock(Data);
 try
 if SizeOf(FPersonRec) > GlobalSize(Data) then
 Size := GlobalSize(Data);
 { Copy contents of DataPtr to Buffer }
 Move(DataPtr^, FPersonRec, SizeOf(FPersonRec));
 finally
 { Unlock the global memory object }
 GlobalUnlock(Data);
 end;
 except
 GlobalFree(Data); { Free memory allocated, only }
 raise; { if an exception occurs as this }
 end; { memory is managed by Windows }
end;

procedure Register;
begin
 RegisterComponents(’Test’, [TBirthday]);
end;

initialization
 { Register the special clipboard format CF_BIRTHDAY}
 CF_BIRTHDAY := RegisterClipBoardFormat(’CF_BIRTHDAY’);
end.

➤ Listing 1 The BDAY.PAS unit defining the TBirthDay component

the data to the clipboard in two
formats, CF_BIRTHDAY and CF_TEXT.
In order to do this successfully, I
must call the ClipBoard’s method
Open explicitly before I copy each
format to the clipboard. Calling
Open prevents subsequent calls to
clipboard methods from erasing
the clipboard’s contents, thus
allowing me to save multiple
formats at once.

Note that I call GlobalFree on the
variable Data only in the event of an
exception. This is because once
Data is copied to the clipboard,
Windows is responsible for manag-
ing the memory occupied by Data,
which includes freeing its memory.

TBirthday’s PasteFromClipBoard
performs the opposite of

the CopyToClipBoard method. It
retrieves the data in the
CF_BIRTHDAY format using
TClipboard’s GetAsHandle method.
This method takes the CF_BIRTHDAY
value as a parameter and returns a
handle to the requested data.
PasteFromClipboard does not
retrieve the data in CF_TEXT format.
This format is already known by
other Windows applications and
Delphi components as you will see
in the example project.

Using The
CF_BIRTHDAY Format
To use this newly defined format,
I’ve created the sample applica-
tion, shown in Listing 2. The main
form is shown in Figure 1. This form

simply consists of a TEdit and two
TMaskEdit controls into which the
user will enter the birthday
information. Three additional
TEdit controls and one TMemo will
receive the information retrieved
from the clipboard from the first
TEdit and TMaskEdit controls.

Listing 2 shows the code for the
main form, which also contains the
event handlers for the Copy and
Paste buttons.

The CopyBtnClick first creates
an instance of TBirthDay called
MyBirthDay. It then assigns the
initialized TPersonRec variable to
TBirthDay’s Person property
and then calls the method
MyBirthDay.CopyToClipBoard. The
PasteBtnClick method does the

September 1995 The Delphi Magazine 19

unit Persu;

interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, BDay, StdCtrls,
 ClipBrd, ExtCtrls, Mask;
type
 TForm1 = class(TForm)
 CopyBtn: TButton;
 NameEdit: TEdit;
 AgePaEdit: TEdit;
 BDPaEdit: TEdit;
 Label1: TLabel;
 Label2: TLabel;
 Memo1: TMemo;
 Label3: TLabel;
 PasteBtn: TButton;
 BDMaskEdit: TMaskEdit;
 AgeMaskEdit: TMaskEdit;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Bevel1: TBevel;
 NamePaEdit: TEdit;
 procedure PasteBtnClick(Sender: TObject);
 procedure CopyBtnClick(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;

implementation
{$R *.DFM}

procedure TForm1.CopyBtnClick(Sender: TObject);
var
 PersonRec: TPersonRec;
 MyBirthDay: TBirthDay;

begin
 MyBirthDay := TBirthDay.Create(self);
 try
 { Put data from edit controls into PersonRec }
 PersonRec.Name := NameEdit.Text;
 PersonRec.Age := StrToInt(AgeMaskEdit.Text);
 PersonRec.BirthDate := StrToDate(BDMaskEdit.Text);
 { Assign the record to the Person property }
 MyBirthDay.Person := PersonRec;
 { Copy the data to the clipboard }
 MyBirthDay.CopyToClipboard;
 finally
 MyBirthDay.Free;
 end;
end;

procedure TForm1.PasteBtnClick(Sender: TObject);
var
 PersonRec: TPersonRec;
 MyBirthDay: TBirthDay;
begin
 MyBirthDay := TBirthDay.Create(self);
 try
 { Check if format is available }
 if ClipBoard.HasFormat(CF_BIRTHDAY) then begin
 { Get the clipboard data }
 MyBirthDay.PasteFromClipBoard;
 { Copy over the person data }
 PersonRec := MyBirthDay.Person;
 { Update the edit controls }
 NamePaEdit.Text := PersonRec.Name;
 AgePaEdit.Text := IntToStr(PersonRec.Age);
 BDPaEdit.Text := DateToStr(PersonRec.BirthDate);
 { Data in CF_TEXT format also }
 Memo1.PasteFromClipBoard;
 end;
 finally
 MyBirthDay.Free;
 end;
end;
end.

opposite. It also creates a TBirthDay
instance, then checks for the
CF_BIRTHDAY format on the
clipboard and calls the method
MyBirthDay.PasteFromClipBoard if
that format is present. The TEdit
controls are updated with the data
contained in MyBirthDay.Person
whereas the TMemo retrieves that
same data in the CF_TEXT format.

Figure 1 shows the form with
data entered before the pasting
from the clipboard and Figure 2
shows the form after the data has
been pasted from the clipboard.

Xavier Pacheco is a Delphi
Developer with TurboPower
Software and co-author of Delphi
Developer’s Guide by Sams
Publishing. You can reach Xavier
on CompuServe at 76711,666

➤ Figure 2
Main Form
after
ClipBoard
paste

➤ Figure 1
Main Form
before
ClipBoard
paste

➤ Listing 2 Source code
for the main form

20 The Delphi Magazine Issue 3

	Creating the Custom Clipboard Format
	Using the CF_BIRTHDAY Format

